92. Aromatic Nucleophilic Substitution

Part l

Regiospecific Substitution of the Nitro Groups in 3,5-Dinitrophthalic-Acid Derivatives¹)

by Walter Fischer* and Vratislav Kvita

Central Research Laboratories, Ciba-Geigy AG, CH-4002 Basle

(6.II.85)

The regioselectivity of nucleophilic substitution of the nitro groups in 3,5-dinitrophthalic anhydrides and 3,5-dinitrophthalimides (*Scheme*) with a variety of nucleophiles (Nu⁻⁻) was studied. In all cases, the 3-nitro group was selectively substituted. With excess of the same nucleophilic reagent or with other nucleophiles, the 5-nitro group could subsequently be replaced.

1. Introduction. – The nucleophilic substitution of aromatic nitro groups has attracted increasing attention in recent years [1] for both theoretical [2] and synthetic [3] reasons. The possibility to run such reactions in dipolar aprotic media in high concentrations, with short reaction times, and excellent yields has prompted their introduction into industrial processes. Thus, the substitution reactions of 3- and 4-nitrophthalic-acid derivatives with phenolates and thiophenolates (to give intermediates for the preparation of polymers with excellent properties) have been thoroughly studied [4] (Scheme). We recently used

some of these intermediates, *e.g.* 3-(phenylthio)phthalic anhydride (3a), to prepare 9-oxo-9H-thioxanthene-1-carboxylic-acid derivatives **4** which proved to be excellent photosensitizers and photoinitiators for industrial applications [5]. We have now extended this study to 3,5-dinitrophthalic-acid (1a) derivatives and report here our results on the regioselectivity of the substitution reactions with N-, O- and S-nucleophiles and bromide ion.

2. Results. – a) Substitutions with Thiols and Thiophenols. The dinitrophthalimides 2a-c reacted under a variety of conditions with thiols and thiophenols to give the 3-substituted products 2d, 2f-h, 5, and 6 in good yields. With excess reagents, the 3,5-disubstituted products (2e, 2i) were formed. The results are summarized in Table 1.

¹) Presented in part at the Herbstversammlung der Schweizerischen Chemischen Gesellschaft, Berne, October, 1981.

Table 1. Substitution of Nitrophthalimides with Thiols and Thiophenols

Starting material	Reagent	Solvent	Base	Product	Yieldª) [%]
2c	C ₂ H ₅ SH	AcOEt	AcONa	2d	45
2c	C ₂ H ₅ SH	DMF	K ₂ CO ₃	2e	82
2c	$C_{10}H_{21}SH$	AcOEt	^b)	2f	77
2a	C ₆ H ₅ SH	AcOEt	K ₂ CO ₃	2g	90
2b	C ₆ H ₅ SH	CH_2Cl_2/H_2O°	AcONa	2h	95
2b	C ₆ H ₅ SH	DMSO	-	2h	90
2h	C ₆ H ₅ SH	DMSO	^b)	2i	91
2a	o-NH ₂ C ₆ H₄SH	AcOEt	AcONa	5	99
2a	1-Methyltetrazol-5-thiol	DMSO	^b)	6	58

a) Yield of isolated, pure product; see Exper. Part for details.

b) With preformed sodium salt.

^c) With addition of benzyltriethylammonium chloride.

These favourable results with phthalimides prompted us to try the substitution reactions with 3,5-dinitrophthalic anhydride (**3b**) in order to avoid the subsequent hydrolysis to the substituted anhydride. From the literature [4b] it was known that 3-halophthalic anhydrides react with sodium thiophenolates, whereas the reaction with 3-nitrophthalic anhydride was much less satisfactory due to side reactions produced by the nitrite leaving group, *e.g.* attack on the anhydride function or oxidation of the thiophenolate to the corresponding disulfide. Similarly in our case the reactions with dinitrophthalic anhydride **3b** did not proceed satisfactorily. In an attempt to remove the nitrite ion as quickly as possible from the reaction mixture, we used a phase-transfer-catalysed two-phase system [6] (CH₂Cl₂/H₂O). Under these conditions, moderate yields of the substitution products **3c-e** could be obtained from **3b** with thiophenol, *p*-thiocresol, and *p*-methoxythiophenol. The yields could be somewhat improved by the addition of Ac₂O which served to protect the anhydride against hydrolysis.

b) Substitutions with Sulfinates. The dinitroimide 2b reacted with an excess of sodium methanesulfinate in 1,2-dimethoxyethane exclusively at the 3-position to give 2k. With sodium benzenesulfinate, both mono-adduct 2l and bis-adduct 2m could be isolated in

good yields depending on stoichiometry and reaction conditions. Even the less reactive 3-alkylthio-5-nitrophthalimide **2f** reacted with sodium benzenesulfinate to give **2n**.

c) Substitutions with Alcohols, Phenols, and Acetate. With aliphatic alcoholates, the dinitroimides 2a-c did not give satisfactory results. Only propargyl alcohol gave a regioselective substitution to give 2o from 2b in moderate yield. With sodium *p*-cresolate, the reaction with the dinitroimide 2c proceeded smoothly to give the *p*-tolyloxy derivative 2p. By contrast, the 5-nitro-3-(phenylthio)phthalimide 2h reacted smoothly with different primary and secondary sodium alcoholates and sodium phenolate in DMSO to give compounds 7 (see Table 2). It appears therefore that the difficulties with dinitroimides and alcoholates are due to the 3-nitro group, perhaps to its activating effect on the neighbouring carbonyl group.

Product	R	Yield [%]	m.p. (solvent of recrystallisation)
7a	CH ₃ ^a)	84	166-8° (toluene/cyclohexane)
7Ь	C_2H_5	41	155–7° (CH ₃ CN)
7c	(CH ₃) ₂ CH	83	174-6° (toluene)
7d	$CH_2 = CHCH_2^b$)	55	132-5° (C ₂ H ₅ OH)
7e	HC=CCH ₂	43	195–7° (CH ₃ CN)
7f	C ₆ H ₅	55	156-8° (CH ₃ CN)

^a) See *Exper. Part* for a representative procedure.

^b) One equiv. of NaOCH₃ was dissolved in allyl or propargyl alcohol and the mixture evaporated to ¹/₂ volume before diluting with DMSO (*dry sodium propargyloxide proved to be pyrophoric*).

The dinitroimide **2b** was smoothly and regioselectively substituted by NaOAc in DMSO to give the hydroxy compound **2q**. This reaction occurred also with NaHCO₃, Na₂CO₃, K₂CO₃, and NaNO₂ at room temperature, and thus indicates the high reactivity of the 3,5-dinitrophthalimide system towards nucleophilic substitution.

d) Substitutions with Sodium Azide. The dinitroimide 2c gave, depending on stoichiometry and reaction conditions, either regiospecifically the mono-azide 2r or the bis-azide 2s.

e) Substitution with Lithium Bromide. The dinitroimide 2b reacted with LiBr in CH₃CN under pressure to give regiospecifically the bromide adduct 2t (for a similar reaction, see [7]).

3. Discussion. – The 3,5-dinitrophthalic anhydrides and 3,5-dinitrophthalimides are highly reactive towards aromatic nucleophilic substitutions. In all cases studied here, the first nucleophilic substitution occurs exclusively at the sterically more hindered 3-position. This behaviour parallels the higher reactivity of 3-nitro-*versus* 4-nitrophthalic-acid derivatives [4a] [4b]. This striking reactivity difference cannot be explained readily. Molecular models show that, because of steric hindrance, the 3-nitro group cannot be coplanar with the benzene ring. Thus, the conjugation with the aromatic π -system is partly or totally interrupted, and the C–N bond must be somewhat lengthened and weakened. Consequently, the attack of the nucleophile at the 3-position is favoured by m-activation by the 5-nitro group (in addition to the imide function), whereas the 5-nitro group is less or not at all activated by the 3-nitro group.

Similar high regioselectivities were recently reported by *Stirling* and coworkers using dinitro-alkylbenzenes as activated aromatic nuclei and lithium thiolates as nucleophiles [8].

A variety of the novel 3,5-disubstituted phthalic-acid derivatives reported here having λ_{max} in the range of 350–390 nm have useful properties as triplet photosensitizers [9]. In the following paper, we describe the use of these 3,5-disubstituted phthalic acid derivatives as intermediates for the synthesis of a range of thioxanthones.

The technical assistance of Miss K. Fluri is gratefully acknowledged.

Experimental Part

1. General Remarks. – M.p. are corrected. IR spectra: absorptions in cm⁻¹. ¹H-NMR spectra: chemical shifts in ppm relative to tetramethylsilane (= 0 ppm); coupling constants in Hz. UV spectra: generally CHCl₃ as solv.; only the absorption with the longest wavelength is given: λ_{max} in nm (ε_{max}). Sodium salts of phenols and thiols were prepared by dissolving the compound in 1.00 equiv. of 1.00N NaOH, evaporating the solution to dryness, and finally evaporating twice with toluene or xylene (azeotropes).

2. Preparation of 3,5-Dinitrophthalic-Acid Derivatives. - The 3,5-dinitrophthalic acid (1a) [10], 3,5-dinitrophthalic anhydride (3b) [11] and 3,5-dinitrophthalimide (2a) [12] were prepared according to known procedures.

N-Methyl-3,5-dinitrophthalimide (2c). Method A. The mixture of 1a (51.22 g, 0.2 mol) and N,N'-dimethylurea (8.81 g, 0.1 mol), intimately ground together, was slowly and carefully heated in an open vessel to 180°. The resulting dark transparent melt was held at 180° for further 6 h and then heated to 200° for 1 h. The mixture was cooled, dissolved in CH₂Cl₂/THF, some insoluble material filtered off, and the filtrate evaporated. On recrystallisation from THF-cyclohexane, 42.37 g (84%) of 2c were obtained, mp. 178–80°. Warning: It is not advisable to repeat this experiment on a larger scale or to heat the reaction mixture too fast or above 200°, since an exothermic decomposition of the dinitro compounds might occur.

Method B. To a refluxing soln. of **3b** (238.11 g, 1 mol) in 11 of xylene, N-methylformamide (62.02 g, 1.05 mol) was added dropwise over 30 min. After 18 h at reflux, the mixture was concentrated (H₂O and HCOOH being distilled off) until a b.p. of 137° was reached, and the soln. was filtered while hot. From the filtrate, 209.42 g (83%) of **2c** separated out, m.p. 178–80°. IR (CH₂Cl₂): 1805, 1755 (C=O, imide); 1565, 1355 (NO₂). ¹H-NMR (CDCl₃/ (D₆)DMSO): 9.00 (d, J = 2, H–C(4)); 8.80 (d, J = 2, H–C(6)); 3.22 (3 s, CH₃). Anal. calc. for C₉N₅N₃O₆ (251.15): C 43.04, H 2.01, N 16.73; found: C 43.40, H 2.00, N 16.50.

3,5-Bis(ethylthio)-N-methylphthalimide (2e). A mixture of 2c (20 g, 79.6 mmol), ethanethiol (11.4 ml), K_2CO_3 (47 g) and DMF (200 ml) was stirred for 4 h at 25°. The excess of ethanethiol was removed by a stream of dry N_2 . The mixture was evaporated at 80° *in vacuo* and the residue acidified with 2N HCl. The suspension was extracted with CH₂Cl₂, the extracts washed with brine, dried over Na₂SO₄, and evaporated. Recrystallisation from cyclohexane gave 18.4 g (82%) of 2e, m.p. 97–9°. UV: 378 (4400). 1R (CH₂Cl₂): 1760, 1705 (C=O, imide). ¹H-NMR (CDCl₃): 7.35 (d, J = 2, 1H), 7.22 (d, J = 2, 1H; H–C(4), H–C(6)); 3.12 (s, CH₃N); 3.06 (q, J = 8, 2 CH₃CH₂S); 1.46, 1.42 (2t, J = 8, 2 CH₃CH₂S). Anal. cal. for C₁₃H₁₅NO₂S₂ (281.39): C 55.49, H 5.37, N 4.98, S 22.79; found: C 55.52, H 5.34, N 5.09, S 22.56.

3-Decylthio-N-methyl-5-nitrophthalimide (2f). A mixture of 2c (20.0 g, 79.6 mmol), sodium decanethiolate (21 g, 107 mmol), and AcOEt (100 ml) was stirred for 3 h at 25°. The mixture was evaporated at reduced pressure, and the residue acidified and extracted into CH_2Cl_2 . The org. extracts were washed with brine, dried over anh. Na₂SO₄, and evaporated. Recrystallisation from Et₂O/CH₃OH gave 23.34 g (77%) of 2f, m.p. 78–81°. UV: 410 (3000). IR (CH₂Cl₂): 1800, 1730 (C=O, imide); 1555, 1360 (NO₂). ¹H-NMR (CDCl₃): 8.20 (s, H–C(4), H–C(6)); 3.19 (s, CH₃N); 3.10 (t, J = 7, CH₂S); 0.9–2.0 (m, 19H, CH₂, CH₃). Anal. calc. for C₁₉H₂₆N₂O₄S (378.49): C 60.29, H 6.92, N 7.40, S 8.47; found: C 60.28, H 6.71, N 7,39, S 8.19.

5-Nitro-3-(phenylthio)phthalimide (2g). A mixture of 2a (45.29 g, 191 mmol), K₂CO₃ (83.3 g, 603 mmol), and AcOEt (450 ml) was cooled with stirring to 10°, and thiophenol (22.1 g, 200 mmol) was added in portions. The mixture was stirred at 25–30° for 30 min, then diluted with CH₂Cl₂, washed with 2N HCl and brine, and the org. extract dried over anh. Na₂SO₄ and evaporated. Recrystallisation from toluene gave 51.51 g (90%) of 2g, m.p. 213–4°. UV: 298 (3440). IR (CH₂Cl₂): 1810, 1770 (C=O, imide); 1560, 1360 (NO₂); 3420 (NH). ¹H-NMR (CDCl₃): 11.3 (br. *m*, NH); 8.11 (*d*, *J* = 2, H–C(6)); 7.60 (*d*, *J* = 2, H–C(4)); 7.47 (*m*, C₆H₅S). Anal. calc. for C₁₄H₈N₂O₄S (300.29): C 56.00, H 2.69, N 9.33, O 21.31, S 10.68; found: C 55.49, H 2.88, N 9.56, O 21.42, S 10.45.

5-Nitro-3-(phenylthio)-N-(p-tolyl)phthalimide (**2h**). Method A. A mixture of 3,5-dinitro-N-(p-tolyl)phthalimide (**2b**; 820 mg, 2.5 mmol), thiophenol (330 mg, 3 mmol), and benzyltriethylammonium chloride (29 mg, 0.125 mmol) was dissolved in CH₂Cl₂ (15 ml). With vigorous stirring, a soln. of NaOAc (492 mg, 6 mmol) in 4 ml of H₂O was added and the stirring maintained for 20 min. The mixture was diluted with H₂O, the org. layer separated and washed successively with 2N NaOH, then brine, dried over Na₂SO₄ and evaporated. Recrystallisation from toluene gave 930 mg (95%) of **2h**, m.p. 207–9°.

Method B. To a soln. of **2b** (49 g, 0.15 mmol) in DMSO (500 ml), thiophenol (22.5 g, 0.204 mmol) was added with slight cooling (22–23°) during 10 min (evolution of nitrogen oxides). After 30 min at 25°, the mixture was warmed for 4 h at 45°, then cooled and added to 1 l of ice-water. The precipitate was separated, washed with H₂O, and dried *in vacuo*. Recrystallisation from toluene gave 52.2 g (90%) of **2h**, m.p. 208–9°. UV: 402 (4140). IR (CH₂Cl₂): 1790, 1735 (C=O, imide); 1555, 1350 (NO₂). ¹H-NMR (CDCl₃/(D₆)DMSO): 8.27 (*d*, J = 2, H–C(6)); 7.8–7.6 (tot. 7H, C₆H₅S, and H–C(4)); 7.34 (*m*, C₆H₄-(*p*)); 2.42 (*s*, CH₃). Anal. calc. for C₂₁H₁₄N₂O₄S (390.40): C 64.61, H 3.62, N 7.18, S 8.21; found: C 64.30, H 3.81, N 7.32, S 8.45.

3,5-Bis(phenylthio)-N-(p-tolyl)phthalimide (2i). A mixture of 2h (3.9 g, 10 mmol), sodium thiophenolate (1.4 g, 10 mmol), and DMSO (80 ml) was stirred for 1 h at 25°. The mixture was partitioned between H₂O and CHCl₃, the org. extract washed with H₂O and brine, dried over MgSO₄, and evaporated. Recrystallisation from toluene gave 4.1 g (91%) of 2i, m.p. 279–80°. UV: 376 (5600). Anal. calc. for $C_{27}H_{19}NO_2S_2$ (453.57): C 71.50, H 4.22, N 3.09, S 14.14; found: C 71.30, H 4.40, N 3.20, S 14.00.

3-(o-Aminophenylthio)-5-nitrophthalimide (5). A mixture of **2a** (4.74 g, 20 mmol), NaOAc (5.17 g, 63 mmol), o-aminothiophenol (2.63 g, 21 mmol), AcOEt (80 ml), and THF (20 ml) was stirred at 25° for 18 h. The mixture was diluted with THF (30 ml), toluene (60 ml), and H₂O (100 ml). The org. layer was separated, washed with NaHCO₃ soln., then brine, dried over Na₂SO₄, and evaporated. Recrystallisation from AcOEt/hexane gave 6.25 g (99%) of 5, m.p. 210–227° (turns yellow above 100°). UV: 386 (3400). IR (CH₂Cl₂): 3390 (NH, NH₂); 1805, 1765 (C=O, imide); 1560, 1365 (NO₂). ¹H-NMR (CDCl₃/(CD₃)₂SO): 11.25 (br. s, NH); 8.08 (d, J = 2, H–C(6)); 7.53 (d, J = 2, H–C(4)); 7.4–6.5 (m, C₆H₄); 4.6 (br. s, NH₂). Anal. calc. for C₁₄H₉N₃O₄S (315.30): C 53.33, H 2.88, N 13.33, S 10.17; found: C 53.27, H 3.03, N 13.34, S 9.88.

3-(l'-Methyltetrazol-5'-yl)thio-5-nitro-N-(p-tolyl)phthalimide (6). A mixture of **2b** (655 mg, 2 mmol), sodium 1-methyltetrazol-5-thiolate (304 mg, 2.2 mmol), and DMSO (4 ml) was stirred at 25° for 18 h. The mixture was taken up in H₂O (30 ml), the precipitate separated, washed with H₂O, and dissolved in CH₂Cl₂/H₂O. The org. extracts were washed with brine, dried, and evaporated. Recrystallisation from toluene gave 460 mg (58%) of 6, m.p. 215–8° (dec.). UV: 360 (2720). IR (CHCl₃): 1790, 1730 (C=O, imide); 1550, 1345 (NO₂). ¹H-NMR (CDCl₃/(CD₃)₂SO): 8.49, 8.42 (2d, J = 1.5, H–C(4), H–C(6)); 7.29 (m, C₆H₄); 4.16 (s, CH₃N); 2.44 (s, CH₃Ar). Anal. calc. for C₁₇H₁₂N₆O₄S (396.38): C 51.51, H 3.05, N 21.20, S 8.09; found: C 51.94, H 3.08, N 20.72, S 7.73.

5-Nitro-3-(phenylthio)phthalic Anhydride (3c). To a soln. of 3b (5 g, 21 mmol) in THF (17 ml), thiophenol (2.78 g, 25.2 mmol) and Ac₂O (4.3 g, 42 mmol) were added. This soln. was added, with vigorous stirring, to a mixture of 30% NaOH (22.4 g) soln., benzyltriethylammonium chloride (47.8 mg, 0.21 mmol), and CH₂Cl₂ (100 ml). After 2 h of stirring, the mixture was diluted with H₂O, the aq. layer separated, acidified, and extracted with CH₂Cl₂. The extracts were dried and evaporated. The residue was heated with Ac₂O in toluene, the resulting soln. evaporated, and the crude product recrystallised from CH₂Cl₂/pentane to give 2.57 g (41%) of 3c, m.p. 167–9°. UV: 400 (3040). IR (CH₂Cl₂): 1855, 1790 (C=O, anhydride); 1550, 1345 (NO₂). ¹H-NMR (CDCl₃): 8.31 (*d*, *J* = 2, H–C(6)); 7.74 (*d*, *J* = 2, H–C(4)); 7.57 (*m*, C₆H₅). Anal. calc. for C₁₄H₇NO₅S (301.27): C 55.82, H 2.34, N 4.65, S 10.64; found: C 55.80, H 2.40, N 4.70, S 10.50.

5-Nitro-3-(p-tolylthio)phthalic Anhydride (3d). A mixture of 1a (46.05 g, 180 mmol), Ac_2O (26 g, 250 mmol), and toluene (210 ml) was heated to reflux for 1 h, filtered while hot, and the filtrate evaporated. The residue 3b was dissolved in CH₂Cl₂ (4.6 l) and p-thiocresol (27.4 g, 221 mmol) and Ac_2O (34.7 g, 340 mmol) added. This soln. was added slowly, with vigorous stirring, to a soln. of benzyltriethylammonium chloride (1.9 g, 8.5 mmol) in 50% KOH soln. (190.4 g) during 135 min. After further 90 min of stirring, the mixture was acidified. H₂O and acetone were added to obtain 2 clear phases, and the org. phase was separated, dried, and evaporated. The whole procedure was repeated with the use of Ac_2O (36.7 g) in 200 ml of toluene, then with Ac_2O (21.8 g, 214 mmol), p-thiocresol (19.9

851

g, 161 mmol), benzyltriethylammonium chloride (2.4 g), and 30% NaOH soln. (285 g). The resulting residue was heated with Ac₂O (52.1 g) and toluene (500 ml). Recrystallisation from CH₂Cl₂/pentane gave 20.83 g (39%) of **3d**, m.p. 180–2°. UV: 404 (3600). IR (CH₂Cl₂): 1840, 1770 (C=O, anhydride); 1540, 1340 (NO₂). ¹H-NMR (CDCl₃): 8.19 (*d*, J = 2, H–C(6)); 7.68 (*d*, J = 2, H–C(4)); 7.5–7.05 (*A*₂*B*₂, C₆H₄); 2.31 (*s*, CH₃). Anal. calc. for C₁₅H₉NO₅S (315.30): C 57.14, H 2.88, N 4.44, S 10.17; found: C 57.30, H 3.00, N 4.50, S 10.10.

3-(p-Methoxyphenylthio)-5-nitrophthalic Anhydride (3e). A soln. of 3b (12.17 g, 51.1 mmol), 4-methoxythiophenol (10.7 g, 76.6 mmol), and Ac₂O (10.2 g, 100 mmol) in 1350 ml of CH₂Cl₂ was added dropwise, with vigorous stirring, to a soln. of benzyltriethylammonium chloride (1.2 g) in 33% KOH soln. (68.6 g, 408 mmol) and CH₂Cl₂ (50 ml). After 2 h, the mixture was acidified and extracted with CH₂Cl₂. The extracts were dried and evaporated, and the residue heated to reflux with Ac₂O (5.3 g) in toluene (100 ml). The soln. was filtered while hot and evaporated. The residue was extracted several times with boiling cyclohexane from which 5.15 g (31%) of 3e crystallised, m.p. 143-8°. IR (CH₂Cl₂): 1840, 1780 (C=O, anhydride); 1540, 1335 (NO₂). ¹H-NMR (CDCl₃): 8.29 (d, J = 2, H-C(6)); 7.76 (d, J = 2, H-C(4)); 7.6-6.9 (A₂B₂, C₆H₄); 3.90 (s, CH₃O). Anal. calc. for C₁₅H₉NO₆S (331.30): C 54.38, H 2.74, N 4.23, S 9.68; found: C 54.40, H 2.90, N 4.30, S 9.50.

3. Substitutions with Sulfinates. – 3-Methylsulfonyl-5-nitro-N-(p-tolyl)phthalimide (2k). A mixture of 2b (1.64 g, 5 mmol), sodium methanesulfinate [13] (1.02 g, 10 mmol), and 1,2-dimethoxyethane (15 ml) was stirred together at 50° for 6 h. The mixture was evaporated *in vacuo*, the residue dissolved in CH₂Cl₂/H₂O and the org. extracts washed with sat. NaHCO₃ soln., dried over Na₂SO₄, and evaporated. Recrystallisation from CH₃CN/ toluene gave 1.70 g (94%) of 2k, m.p. 230–2°. IR (CHCl₃): 1798, 1740 (C=O, imide); 1560, 1355 (NO₂); 1380, 1340, 1175, 1145, 1135 (SO₂). ¹H-NMR (CDCl₃/(CD₃)₂SO): 9.03 (d, J = 2, H–C(4)); 8.94 (d, J = 2, H–C(6)); 7.28 (m, C₆H₄); 3.50 (s, CH₃CO₂); 2.41 (s, CH₃Ar). Anal. calc. for C₁₆H₁₂N₂O₆S (360.34): C 53.33, H 3.36, N 7.78, S 8.90; found: C 52.96, H 3.46, N 7.66, S 8.84.

5-Nitro-3-(phenylsulfonyl)-N-(p-tolyl)phthalimide (21). A mixture of 2b (3.27 g, 10 mmol), sodium benzenesulfinate (1.81 g, 11 mmol) and DMSO (15 ml) was stirred together at 25° for 6 h. Then 200 ml of H₂O were added, and the mixture was stirred for 1 h. The precipitate was filtered, washed with H₂O, and dissolved in CH₂Cl₂. The org. phase was washed with brine, dried over Na₂SO₄, and evaporated. Recrystallisation from toluene gave 3.70 g (88%) of 2l, m.p. 262–6°. IR (CHCl₃): 1795, 1730 (C=O, imide); 1545, 1345 (NO₂); 1380, 1330, 1170 (SO₂). ¹H-NMR (CDCl₃): 9.14 (d, J = 2, H–C(4)); 8.63 (d, J = 2, H–C(6)); 8.2–7.9, 7.5–7.2 (2m, C₆H₃SO₂); 7.10 (s, C₆H₄); 2.20 (s, CH₃). Anal. calc. for C₂₁H₁₄N₂O₆S (422.41): C 59.71, H 3.34, N 6.63, S 7.59; found: C 59.80, H 3.43, N 6.60, S 7.66.

3,5-Bis(phenylsulfonyl)-N-(p-tolyl)phthalimide (**2m**). A mixture of **2b** (1.64 g, 5 mmol), sodium benzenesulfinate (1.97 g, 12 mmol), and DMSO (20 ml) was stirred at 25° for 2 days after which the mixture was added with stirring to H₂O (200 ml). The precipitate was filtered off, washed with H₂O and dissolved in CH₂Cl₂/acetone. The org. extract was dried over Na₂SO₄ and evaporated. Recrystallisation from acetone/CH₃CN gave 2.32 g (90%) of **2m**, m.p. 150–4°. IR (KBr): 1789, 1730 (C=O, imide); 1375, 1330, 1160 (SO₂). ¹H-NMR ((CD₃)₂SO): 8.97 (*d*, *J* = 2, H–C(4)); 8.63 (*d*, *J* = 2, H–C(6)); 8.3–7.9 (*m*, 4H), 7.8–7.5 (*m*, 6H; 2 C₆H₅SO₂); 7.22 (*m*, C₆H₄); 2.35 (*s*, CH₃). Anal. calc. for C₂₇H₁₉NO₆S₂ (517.57): C 62.66, H 3.70, N 2.71, O 18.55, S 12.39; found: C 62.48, H 3.69, N 2.86, O 18.92, S 12.22.

3-Decylthio-N-methyl-5-(phenylsulfonyl)phthalimide (2n). A mixture of 2f (2 g, 5.28 mmol), sodium benzenesulfinate (1.73 g, 10.57 mmol), and DMF (20 ml) was stirred at 120° for 17 h. The mixture was evaporated *in vacuo* and the residue dissolved in CH₂Cl₂/H₂O. The org. extracts were washed with brine, dried over Na₂SO₄, and evaporated slowly. Thus, 1.83 g (73%) of 2n separated out, m.p. 91–2°. UV: 388 (3300). IR (CH₂Cl₂): 1790, 1730 (C=O, imide); 1385, 1330, 1175, 1155 (SO₂). ¹H-NMR (CDCl₃): 7.98 (d, J = 2), 7.87 (d, J = 2; H–C(4), H–C(6)); 7.95–7.8 (m, 2H), 7.65–7.4 (m, 3H; C₆H₅So₂); 3.14 (s, CH₃N); 3.08 (t, J = 7, CH₂S); 2.0–0.8 (19H, n-C₉H₁₉). Anal. calc. for C₂₅H₃₁NO₄S₂ (473.65): C 63.40, H 6.60, N 2.96, S 13.54; found: C 63.17, H 6.39, N 3.58, S 12.73.

4. Substitutions with O-Nucleophiles. – 5-Nitro-N-methyl-3-(p-tolyloxy)phthalimide (2p). A mixture of 2c (100 g, 398 mmol), freshly prepared sodium p-cresolate (55.4 g), and THF (750 ml) was stirred at 0° for 1 h. The mixture was evaporated *in vacuo*, the residue dissolved in CH₂Cl₂/2N HCl, the org. phase washed with brine, dried over Na₂SO₄, and evaporated. Recrystallisation from toluene gave 95.75 g (77%) of 2p, m.p. 149–50°. UV: 358 (2560). IR (CH₂Cl₂): 1802, 1750 (C=O, imide); 1565, 1360 (NO₂). ¹H-NMR (CDCl₃): 8.18 (d, J = 2, 1H), 7.72 (d, J = 2, 1H; H–C(4), H–C(6)); 7.18 (d, J = 9, 2H), 6.90 (d, J = 9, 2H; C₆H₄); 3.14 (s, CH₃N); 2.33 (s, CH₃). Anal. calc. for C₁₆H₁₂N₂O₅ (312.28): C 61.54, H 3.88, N 8.97; found: C 61.63, H 3.79, N 8.78.

5-Nitro-3-(2-propynyloxy)-N-(p-tolyl)phthalimide (20). A mixture of 2b (3.3 g, 10 mmol), K_2CO_3 (1.9 g, 13 mmol), 2-propynyl alcohol (1.1 g, 20 mmol), 2,6-bis(tert-butyl)phenol (40 mg, 0.2 mmol), and dioxane (60 ml) was refluxed for 2 h. The mixture was evaporated *in vacuo* and the residue dissolved in CH₂Cl₂/2N HCl. The org.

extracts were washed with NaHCO₃ soln., then with brine, dried over Na₂SO₄, and evaporated. Recrystallisation gave 1.3 g (39%) of **20**, m.p. 169–72°. UV: 345 (5100). IR (CH₂Cl₂): 3330, 2130 (C=CH); 1795, 1740 (C=O, imide); 1560, 1355 (NO₂). ¹H-NMR (CDCl₃): 8.37 (*d*, J = 2, H–C(4), H–C(6)); 7.29 (*m*, C₆H₄); 5.06 (*d*, J = 2, CH₂O); 2.67 (*t*, J = 2, C=CH); 2.40 (*s*, CH₃Ar). Anal. calc. for C₁₈H₁₂N₂O₅ (336.30): C 64.29, H 3.60, N 8.33; found: C 63.90, H 3.60, N 8.40.

3-Hydroxy-5-nitro-N-(p-tolyl)phthalimide (2q). A mixture of 2b (1.64 g, 5 mmol), anh. NaOAc (0.9 g, 11 mmol), and DMSO (8 ml) was stirred at 25° for 24 h. The mixture was diluted with H₂O (100 ml) and extracted with CH₂Cl₂. The extracts were washed with brine, dried over Na₂SO₄, and evaporated. Recrystallisation from toluene gave 1.24 g (83%) of 2q, m.p. 211–3°. UV: 355 (5500). UV (Na-salt, EtOH): 438 (4200). IR (dioxane): 4000–2600 (br., OH); 1790, 1740 (C=O, imide); 1560, 1355 (NO₂). ¹H-NMR ((D₆)DMSO): 12.00 (br. *m*, OH); 8.00 (*d*, J = 2, 1H), 7.91 (*d*, J = 2, 1H; H–C(4), H–C(6)); 7.29 (*m*, C₆H₄); 2.40 (*s*, CH₃Ar). Anal. calc. for C₁₅H₁₀N₂O₅ (298.25): C 60.41, H 3.38, N 9.39; found: C 60.16, H 3.43, N 9.38.

5-Methoxy-3-(phenylthio)-N-(p-tolyl)phthalimide (7a). A 1.0M soln. of NaOCH₃ in CH₃OH (110 ml, 110 mmol) was evaporated to dryness and added to DMSO (200 ml). Then, **2h** (39.04 g, 100 mmol) was added, the mixture stirred for 18 h at 25°, then diluted with H₂O (1.5 l) and 2N HCl (10 ml), and extracted with CHCl₃. The extracts were washed with H₂O and brine, dried over Na₂SO₄, and evaporated. Recrystallisation from toluene/cyclohexane gave 31.68 g (84%) of 7a, m.p. 166–8°. UV: 360 (3000). ¹H-NMR (CDCl₃): 7.7–7.35 (*m*, C₆H₅S); 7.28 (*m*, C₆H₄); 7.07 (*d*, J = 2, H–C(6)); 6.35 (*d*, J = 2, H–C(4)); 3.68 (*s*, CH₃O); 2.38 (*s*, CH₃Ar). Anal. calc. for C₂₂H₁₇NO₃S (375.44): C 70.38, H 4.57, N 3.73, S 8.54; found: C 70.31, H 4.58, N 3.79, S 8.54. Similarly prepared were compounds **7b–f** (see *Table 2*).

5. Substitutions with Sodium Azide. – 3-Azido-N-methyl-5-nitrophthalimide (2r). A mixture of 2c (2 g, 7.96 mmol), NaN₃ (0.54 g, 8.36 mmol), and DMF (20 ml) was stirred at 25° for 21 h. The mixture was added to H₂O (200 ml) and 2N HCl (10 ml). The product was extracted into CH₂Cl₂. The extracts were washed with H₂O and brine, dried over Na₂SO₄ and evaporated. Recrystallization from CH₂Cl₂/pentane gave 1.26 g (64%) of light sensitive 2r, m.p. 123–4°. UV: 358 (4000). IR (CH₂Cl₂): 2140 (N₃); 1785, 1730 (C=O, imide); 1555, 1353 (NO₂). ¹H-NMR (CDCl₃): 8.35 (d, J = 2, 1H), 8.21 (d, J = 2, 1H; H–C(4), H–C(6)); 3.22 (s, CH₃). Anal. calc. for C₉H₅N₅O₄ (247.17): C 43.73, H 2.04, N 28.33; found: C 43.97, H 2.05, N 28.93.

3,5-Diazido- N-methylphthalimide (2s). The above reaction was repeated using 1.29 g (19.9 mmol) of NaN₃, and the mixture was stirred at 50° overnight. Recrystallisation from CH₂Cl₂/pentane gave 1.34 g (68%) of 2s, m.p. 153-4° (dried under high vacuum at < 50° and protected from light). UV: 347 (4800). IR (CH₂Cl₂): 2160 (N₃); 1790, 1735 (C=O, imide). ¹H-NMR (CDCl₃): 7.28 (d, J = 2, H-C(6)); 6.89 (d, J = 2, H-C(4)); 3.17 (s, CH₃). Anal. calc. for C₉H₃N₇O₂ (243.19): C 44.45, H 2.08, N 40.32; found: C 44.57, H 2.23, N 40.31.

6. Substitution with LiBr. – 3-Bromo-5-nitro-N-(p-tolyl)phthalimide (2t). A mixture of 2b (2 g, 6.11 mmol), anh. LiBr (1,06 g, 12,22 mmol), and CH₃CN (10 ml) was heated in a pressure reaction vessel to 160° for 18 h. The mixture was evaporated and the residue dissolved in CH₂Cl₂. The org. extracts were washed with brine, dried over Na₂SO₄, and evaporated. The residue, 1.41 g (64%), was chromatographed with CHCl₃ on silica gel to give, after recrystallisation from CH₂Cl₂/pentane, 0.94 g (43%) of 2t, m.p. 173–5°. IR (CH₂Cl₂): 1790, 1740 (C=O, imide); 1560, 1350 (NO₂). ¹H-NMR (CDCl₃): 7.71 (d, J = 2, 1H), 8.62 (d, J = 2, 1H; H–C(4), H–C(6)); 7.29 (m, C₆H₄); 2.21 (s, CH₃). Anal. calc. for C₁₅H₉BrN₂O₄ (361.15): C 49.89, H 2.51, Br 22.13, N 7.76; found: C 49.98, H 2.68, Br 21.15, N 8.08.

7. Hydrolyses of Phthalimides to Phthalic Acids and Anhydrides. – 5-Nitro-3-(phenylthio)phthalic Acid (1b). Method A. A mixture of 2h (160 g, 410 mmol) and 20% aq. NaOH soln. (1590 ml) was refluxed for 18 h. The mixture was acidified at 10–15° with conc. HCl. The crude amido acid was separated and stirred in conc. HCl (1070 ml) at reflux for 3 h. The mixture was cooled and the precipitate filtered off and dissolved in Na₂CO₃ soln. Neutral products were filtered off, and the filtrate was acidified and cooled. The precipitate was separated and dried over P_2O_5 to give 116.2 g (89%) of 1b, m.p. 183–5°.

Method B. A mixture of 2g (3.0 g, 10 mmol) and 1N NaOH (30 ml) was refluxed for 8 h. The mixture was cooled, acidified, and extracted with THF/toluene. The org. extracts were washed with brine, dried over Na₂SO₄, and evaporated to give 3.13 g (98%) of 1b, m.p. 182-4°. Anal. calc. for $C_{14}N_9NO_6S$ (319.29): C 52.67, H 2.84, N 4.39, S 10.04; found: C 52.90, H 3.20, N 4.30, S 9.80.

The acid 1b was dehydrated to the anhydride 3c by refluxing with an excess of Ac_2O in toluene for 1 h. Recrystallisation from CH_2Cl_2 /pentane gave 98% of 3c, m.p. 167-9°.

*S-Nitro-3-(*p-tolyloxy)phthalic Anhydride (3f). A mixture of 2p (312 mg, 1 mmol) and 1N NaOH (3 ml) was refluxed together for 2 days. The mixture was cooled, acidified to pH 0, heated to reflux for 15 min, cooled, and extracted with THF/toluene. The extracts were dried over Na_2SO_4 and evaporated. The residue was refluxed with

Ac₂O (0.5 ml) in toluene (4 ml) for 5 min. The soln. was evaporated, and the residue gave, recrystallised from CH₂Cl₂/pentane, 250 mg (84%) of **3f**, m.p. 162–8°. IR (CH₂Cl₂): 1870, 1800 (C=O, anhydride); 1560, 1350 (NO₂); 910 (C–O–C). ¹H-NMR (CDCl₃): 8.36 (*d*, J = 2, H–C(6)); 7.88 (*d*, J = 2, H–C(4)); 7.31 (*d*, J = 9, 2H), 7.05 (*d*, J = 9, 2H; C₆H₄); 2.44 (*s*, CH₃). Anal. calc. for C₁₅H₉NO₆ (299.24): C 60.21, H 3.03, N 4.68; found: C 59.92, H 3.20, N 4.63.

REFERENCES

- [1] J. R. Beck, Tetrahedron 1978, 34, 2057.
- [2] a) H. M. Relles, D.S. Johnson, J. S. Manello, J. Am. Chem. Soc. 1977, 99, 6677; b) M. R. Crampton, Org. React. Mech. 1980, 14, 281; ibid. 1981, 15, 263; ibid. 1982, 16, 211 (reviews); c) N. D. Epiotis, S. Shaik, J. Am. Chem. Soc. 1978, 100, 29; d) G. M. Brooke, Arom. Heteroarom. Chem. 1979, 7, 287 (review); e) C.F. Bernasconi, Chimia 1980, 34, 1 (review).
- [3] a) N. Kornblum, L. Cheng, R. C. Kerber, M. M. Kestner, B. N. Newton, H. W. Pinnick, R.G. Smith, P. A. Wade, J. Org. Chem. 1976, 41, 1560; b) A.P. Kozikowski, M. N. Greco, J. Am. Chem. Soc. 1980, 102, 1165; c) J. R. Beck, R. L. Sobczak, R. G. Suhr, J. A. Yahner, J. Org. Chem. 1974, 39, 1839.
- [4] a) F. J. Williams, P. E. Donahue, J. Org. Chem. 1978, 43, 250; b) F. J. Williams, P. E. Donahue, *ibid.* 1978, 43, 255; c) T. Takekoshi, J. G. Wirth, D. R. Heath, J. E. Kochanowski, J. S. Manello, M. J. Webber, J. Polym. Sci., Polym. Chem. Ed. 1980, 18, 3069.
- [5] V. Kvita, H. Zweifel, M. Roth, L. Felder, to Ciba-Geigy AG, 1980, Ger. Offen. 30 18 891.
- [6] M. Makosza, M. Jagusztyn-Grochowska, M. Ludwikow, M. Jawdosiuk, Tetrahedron 1974, 30, 3723.
- [7] J.H. Gorvin, to Burroughs Wellcome Co., 1976, U.S. Pat. 3.950.342.
- [8] F. Benedetti, D. R. Marshall, C. J. M. Stirling, J. Chem. Soc., Chem. Commun. 1982, 918.
- [9] W. Fischer, V. Kvita, to Ciba-Geigy AG, 1981, Ger. Offen. 31 17 589.
- [10] S. Racine, Justus Liebigs Ann. Chem. 1887, 239, 71.
- [11] R. Eder, C. Widmer, Helv. Chim. Acta 1923, 6, 966.
- [12] K. D. Gundemann, M. Drawert, Ber. Dtsch. Chem. Ges. 1962, 95, 2018.
- [13] a) M. Bazlen, Ber. Dtsch. Chem. Ges. 1927, 60, 1470; b) N.H. Nilsson, C. Jacobsen, O.N. Sörensen, N.K. Haunsöe, A. Senning, Chem. Ber. 1972, 105, 2854.